Variations of the subsurface conditions can be characterized by variations in the electrical resistivity. The ERT and IP methods are optimized for mapping variations in electrical resistivity and chargeability. ERT and IP can be applied for various objectives where information about subsurface structures and conditions is crucial.

The ERT/IP method

The ERT method is a non-intrusive galvanic geophysical method.

Variation in the subsurface can be mapped using various survey strategies, adapted to specific targets and purposes.

Commonly used is the 2D profiling setup. For more detailed purposes the arrays can be expanded to more complex 3D setup.

Resolution and maximum investigation depth is highly depending on the field setup like length of cable layout and electrode distance.

Smaller electrode separation is applied for detailed mapping of the shallow subsurface, whereas longer separations are used for mapping the resistivity of the deeper subsurface.

Combining ERT with measurement of time domain Induces Polarization (IP) enables characterizing variation in electrical chargeability. Jointly ERT/IP measurements are highly relevant for mineral prospecting and mapping of contaminated sites.

Instrumentation

Ramboll uses the most accurate and efficient available instrumentation.

Multi core cables with takeout distances for every 2, 5 or 10m and total length reaching 800m are typically used. The instrumentation is ABEM LS, ABEM SAS4000, or ES10-64 produced by ABEM /Guideline Geo.

CONTACT

Peter Thomsen
Technical Manager/Geophysicist
+45 5161 7740
prt@ramboll.com

Uffe Torben Nielsen
Project Director
+45 5161 6782
utn@ramboll.com

Ramboll Denmark Hannemanns Allé 53
DK- 2300 København S
www.ramboll.dk
Applications
The ERT and IP methods are applicable in several cases where subsurface conditions are crucially.

Examples are:
- Delineation of aquifers
- Mapping protecting clay layers separating shallow aquifers from the deeper and better protected aquifers.
- Contaminating percolates studies and discrimination of former waste sites.
- Delineation of natural resources, for example clay, sand, gravel etc.
- Mineral prospecting. The IP method is especially valuable for mapping disseminated sulphide mineralization.
- Pre-geotechnical investigations e.g. at larges construction sites, road development and pipeline investigations.

Services
Ramboll has more than 20 years of experiences and will:
- Support clients and other stakeholders with relevant information and analysis that ensures optimized survey setup.
- Setup survey optimized for SoW.
- Collect data using experiences geophysicists and SoP.
- Processing and inversion of ERT/IP data using state of the art software packages Aarhus Workbench.
- Interpretation of the inverted ERT/IP data focused on the objective of the survey

Examples
At the figure below a resistivity section for a ERT dataset is visualized with a well-log. Blue colors indicates low resistivity layers e.g. clay or saltwater intrusion. Reds colors indicates high resistivity layers e.g. sand and gravel.

As seen there is a strong correlation between the resistivity section and the well-log description. The extent of the sandlayer correlating with high resistivity, can be interpreted in both direction from the well-log site.

Resistivity section based on ERT data.